Thursday, December 7, 2017

AutoBSP Gets Your Geppetto Board Booted


What is AutoBSP


AutoBSP is a new service offered to Geppetto designers that accelerates board bring-up by customizing a boot configuration file -- a device tree -- for every design.

Quick, What Is a Device Tree?


Device trees are logical maps of the hardware connected to a processor. Linux bootloaders can make use of them to help multiplex GPIO pins, assign addresses to external devices, deliver device settings to kernel modules, and control the SoC’s power-up sequence.

Device tree source (DTS) code is compiled into binaries -- or device tree blobs (DTBs) -- and added to the boot partition of a device’s disk image. The bootloader then reads this DTB and configures the SoC and the operating system with help from its contents.

The SoC, its application-specific processors, programmable power systems, and connected devices are broken down into a tree of nodes. Each node contains vital information about its configuration, voltage levels, GPIO assignments and interrupt vectors. These are used by the kernel and drivers to bring up, operate and expose them to the userspace.

Why Should You Care?

One SoC, many devices: Just a few NXP i.MX 6 boards

In an ecosystem where, for any given SoC, there may be tens of SBCs, compute modules, or expansion boards, board bring-up can be an incredibly difficult challenge. The inclusion of device tree support in the Linux kernel facilitates the process by adding a flexible abstraction layer between the firmware and the hardware, removing the hardware description from the kernel.

Device drivers can be written to glean variables, parameters, and logical addresses for the various hardware components and chip features it needs to operate from the device tree; Regulators can be programmed and sequenced; Chip features can be activated and disabled.

Your Geppetto Board is Unique to You


Let’s say you’ve just designed and ordered a custom board using the Geppetto interface. You have included a Linux-ready COM and a particular collection of sensors, ports and devices that suit your application. That board will be in your hands in a few weeks, tested and ready to go. Gumstix will offer our own flavour of Yocto Linux through our storefront, as well as developer documentation, spec sheets, and other helpful resources.

With almost 200 modules available in the Geppetto library and more added regularly, there are endless possible arrangements that your design might take and it’s possible that you’ll want it running some flavour of Linux. It’s our goal to offer you as much support and information as possible to help get your platform up and running as fast as we can get it in your hands.

AutoBSP is Unique to Your Geppetto Board


Normally, someone would have to manually create a device tree to bring up the components on your board, meticulously adding, tweaking and debugging each node until all of the devices work as expected. AutoBSP delivers a working, compiled device tree specific to your design on demand.

This means that, as soon as the product is in your hands it will be ready to run, saving hours of development and testing. AutoBSP is one more way that Gumstix is accelerating your time to market by getting your prototype designs ready for development as fast as we can deliver the hardware.


SoC and Compute Module Support


Most Linux-ready COM connector and Processor modules are supported by AutoBSP, and the rest are on their way. Here’s some detail:

What AutoBSP Can Do:


AutoBSP will currently build DTBs for boards designed for the majority of platforms available in Geppetto. The following COMs and SoCs are currently supported:

  • Gumstix Overo and Overo STORM COMs
  • Gumstix DuoVero COMs
  • Toradex Colibri iMX6 COMs
  • Toradex Colibri iMX7 COMs
  • TechNexion PICO iMX6 COMs
  • Raspberry Pi 2/3 and Raspberry Pi CM/CM3
  • AM335x (Pepper) SBCs
  • AM437x (Poblano) SBCs
  • SCM-iMX6 (Cobalt) SBCs

What AutoBSP Will Do:


Just like Geppetto, AutoBSP is constantly expanding to accommodate the needs of its users. Expect support to grow as new SoC modules are added to Geppetto. Some additions are already underway.

  • BeagleBone Black
  • Arduino-supported MCUs
  • 96Boards CE (Dragonboard 410C)

Wait, Did You Say Raspberry Pi?


That’s right. When you design a Raspberry Pi HAT, or an RPCM expansion board, AutoBSP will deliver a DTB overlay specific to your board. That’s one file to configure I2C devices, assign GPIOs, and activate SoC features. If you’ve gone and purchased a Gumstix Pi HAT and you’re looking to get started quickly on your next maker project, the AutoBSP-generated dt-overlay will help you skip much of the trial-and-error setup procedure you deal with for other HATs and get you coding as fast as possible.

Copy AutoBSP’s DTBO file to your Raspberry Pi boot partition’s ‘overlays’ directory and change the ‘dtoverlay=’ string in ‘config.txt’ to match and the Linux kernel will ‘see’ your board and its devices when it starts up.

AutoStuff



At Gumstix, we are constantly looking for ways to make our lives easier. The benefit is that we pass these helper services, or their benefits, along to our clients. It started with the COM. Gumstix pioneered the idea in 2003 with the Verdex and Verdex Pro - a Linux-ready compute device the size of a stick of gum. This enabled hardware developers to test, prototype and deploy their designs more easily, encapsulating the compute power in a single, replaceable module.

We carried the idea forward ten years later when Geppetto was born. We further modularized the concept of the computer by introducing hardware as feature modules on a virtual board. Start with a COM connector, drop in USB, Ethernet, and any of the ~150 modules in the Geppetto library to build your own development board, prototype or production device. Click 'Complete Design' and Geppetto generates the CAD files for you and sends them to our engineers for review.

Geppetto now takes advantage of all of the back-end data that Geppetto uses to render your board as well, providing extra resources for engineers and developers. Through the 3D preview feature, users can export the 3D rendering of their device to an STL file.



AutoDoc delivers valuable signal and connection data on the fly before your design is even ordered. It includes links to reference manuals, feature outlines, signal descriptions and their associations, and much more.

Now, AutoBSP goes a step further and gives you the files you need to get Linux up and running. With a featured Yocto image from Gumstix and an AutoBSP DTB, you will have your board running in minutes instead of days.

You can expect to see more of these types of services to crop up from time to time as we discover new ways of making your life easier.

Just One More Reason




AutoBSP is just one more reason why Geppetto is THE design-to-order tool for IoT, embedded, and robotics hardware. Test-drive Geppetto today at geppetto.gumstix.com and create your next innovation.



Monday, October 16, 2017

Say Hello to The Cobalt MC



Introducing the Cobalt MC

Now that Gumstix has added the SCM-i.MX 6Quad and 6Dual SoCs to Geppetto and released a development board along with it, it’s time to put it to use. The Cobalt MC is packed with PC-like features, such as HDMI, Gigabit Ethernet, audio jacks and USB. It also has WiFi, BT4.0/BLE, CSI-2 and SPI, CAN, I2C and UART headers. These combined with a handy cluster of GPIO pins, including PWMs make this a good board for IoT and homebrew gadgets.


It’s powered by the NXP SCM-i.MX 6Quad single-chip module. This SoC packs 4 Arm Cortex-A9 cores, a myriad of embedded systems, a power regulator, 100+ passives and a gig of RAM into a single tiny package. That’s pretty cool.

So what can we do with the Cobalt MC?


Here, let me give you some examples.

Micro-Workstation


Of course. This is the first option that pops into my mind. Load it up with an XFCE flavour of Yocto, install some ARM-ready productivity apps and web browsers, and you’re off to the races. It’s not going to run ‘Overwatch’ or anything, but it’ll fit just about anywhere you could want to put a PC.


IoT Hub


Deploying smart-home gadgets? Need a command and control station to tie them all together? Develop your device management software with this single board computer, and get your connected sensors, actuators, vacuum cleaners, and interfaces talking to each other in no time.


Video Conference Device



Combine the Cobalt MC with a USB far-field mic array, HDMI LCD panel, and an HD camera to broadcast your live feed at blazing Gigabit speeds. Develop an Android or IOS remote control app and take advantage of its Bluetooth functionality.

Smart ROV


Yes, let’s bring up the subject of robots, because robots are awesome. Why not hook the board’s UART bus to an ROV’s microcontroller and have it make all of the pathfinding, obstacle avoidance and target-tracking decisions?

Endless Possibilities


These are only the ideas I could come up with on the fly. You’ve probably been sitting there for weeks/months/years scheming and plotting. Where do you need a tiny quad-core Linux SBC? 
 

The SCM’s in Geppetto D2O


Okay so you’ve read through my examples and have said “Hey that sounds like exactly what I need!” Then you’ve ordered one and developed a prototype around it. Great! I’m glad we could help! But now you’re saying “With all these extra connectors, gadgets and doohickeys, I’m not really taking advantage of the SCM’s svelte size.” Or “This is great but it’s missing something.” Bottom line: “I’d love to crowdfund this or take it to market, but first I’d like to make some changes.”


That’s something that Geppetto’s really good at. If you go to geppetto.gumstix.com and click on the “Designed By Gumstix” tab, you’ll find the Cobalt MC design, which you can export to your workspace and tweak to your heart’s content. You might want to swap the barrel connector for a battery terminal, or get rid of the GPIOs and add a connection for a GPS module. Power over Ethernet, dual-stacked USB ports, accelerometer or barometers. With about 150 modules in the Geppetto library, there’s lots of options.

Tuesday, September 5, 2017

Updates: Intel Joule, LoRa, Arduino and Protocase

Blog Break

It has been a while since I posted a blog entry.  I have been knee-deep in a challenging internal project and haven't had much time to come up for air.  Today, I've got a chance to reflect on some of the things that have been happening here at Gumstix and share my perspective with you.

First, there's the EOL announcement from Intel that blindsided the x86-focused IoT community:
 the Joule, Edison, and Curie modules are soon to be no more than a footnote in the history of embedded computing.

Also, Just recently, hardware support for LoRaWAN was added to the Geppetto module library and 3 LoRa boards were released.  I got to play with that quite a bit.  It also brought with it an ATmega32U4 Geppetto module, supplanting the Curie module as our primary Arduino-compatible MCU.

Finally, I've been talking a lot with Protocase.  These guys are cool.  They provide design and production services for custom small-run enclosures, rackmounts, brackets, and consolets. I'm very excited to see what they're making for me.

Intel EOL Announcements and Me

I'll admit it, I took the Intel Joule news harder than maybe I should have.  I spent a lot of time working with it and it's carrier boards.  I was looking forward to putting the GadgetDrone in the air with the AeroCore 2 for Joule, the Caspa HD and one of the RealSense point cloud cameras we have at the office.  I liked the idea of setting up my Workstation board in a 3D-printed enclosure as a Yocto build slave.  Oh and I still hope to test the Caspa 4K's "tone-mapping (Er, I mean HDR) Video" mode.


I was also sad to see the Curie go.  Working with our Radium 96Boards IE board is a lot of fun.  It had been a while since I'd worked at the MCU level.  Bare-wire programming on an 8051 and using a dual-Arduino Uno plus ZigBee robot controller were highlights of my academic career, but I haven't done anything of the sort since.  The Radium's nice and small, IE compliant and has all the cool features of the Curie, like Bluetooth, 6-axis IMU and Neuron pattern recognition nodes.

For whatever reason, Intel decided to terminate their IoT-targeted endeavors.  Maybe it was the slow - and sometimes negative - response from the community.  It's also possible that the challenges in providing software support for their hardware were more monolithic than anticipated.  Either way, the Joule, Curie and Edison are gone.

For all of you who jumped on board with Intel's IoT hardware just over a year ago, I empathize with your plight.

LoRaWAN

If you're into IoT, you may have heard of LoRa, LoRaWAN and the LoRa Alliance.  It's a communication protocol for sub-GHz long range LPWANs, and it's sweeping Europe and North America's IIoT industry.  It works like this:  

You set up a Gateway. This is the equivalent of a WiFi router in your home, but the difference is these things can have a range of up to 15 km, depending on the quality of your antenna.

You deploy nodes.  These are your data acquisition points - temperature, presence detection, air quality, etc.  Whatever you need to know.  Put them where they need to be and hook them up to a battery, solar panel or hamster wheel (No hamsters were harmed in the writing of this blog post).  The idea is that they require very little power to run and can last anywhere from a week to several months on a single charge, or indefinitely with solar.  These tend to have a range of 2-5 km.

You monitor the data and use it as you see fit.

Gumstix released a gateway/concentrator and a transciever module in Geppetto, as well as a gateway dev board for both the Overo and the Raspberry Pi Compute Modules (Overo Conduit and Gumstix Pi Conduit boards), and a weather station sensor board (Strata Node).  They're in the store and available in both North American and European frequency bands.

Once I had my Gumstix Overo Conduit gateway and an RHF0M301 gateway/concentrator module in hand, I was impressed with how quick and easy it was to set up on thethingsnetwork.org.  The Strata node I recieved was pre-release and hadn't had the bootloader flashed yet (they come pre-flashed now), so it took a little longer, but writing a sketch and setting up a project on TTN and cayenne.mydevices.com went super-smoothly.  It just so happens that I made a bit of a quick-start video:

Arduino Stuff

Arduino is a great thing.  For artists, makers, inventors, amateur developers, and teachers, it's a great way to avoid the challenges of bare-wire programming and get physical objects doing what you want them to do.  For professionals, it's a good prototyping tool, delivering your proof of concept to the project manager in hours or days instead of weeks (or worse).

Adding the ATmega32U4 to the Geppetto library means I'll get a lot more time to play with Arduino hardware, projects, board support, and the IDE.  It also means that there will likely be more Arduino boards coming to the store and hardware modules coming to the Geppetto library.

I'm also going to have to find a quick and easy way to set up my 'arduino_pins.h' file.

Discovering Protocase

If you've seen my previous posts, chances are you've seen my low-tech enclosures, mounting brackets and test environments.  My indoor quadcopter test flight had a paracord tether tied to the rafters so that I didn't give my co-workers a hair cut.  I like to think of it as ISRU (In Situ Resource Utilization).  However, in some cases, a solid, well-made case is more than just a good idea.  When I went shopping for enclosures for my Overo Conduit board so that I could deploy it outside, my boss pointed me to protocase.com.  I think he just wanted me to stop asking for a 3D printer for the office.

These guys are awesome.  They're working on something for me and I can't wait to show it off.  They have a huge variety of custom products: L-shape, U-shape 5-sided, milled aluminum, and more!  They'll build from your CAD drawings and have free templates to help get started.  They even have their own design software for you to use.  If all else fails, they will work with you and design a fully customized enclosure for your device.


If you've got a prototype, an invention or a first-run for a kickstarter campaign, Protocase might be for you.  Just check out their page and see for yourself.


To Summarize:

I've been busy.  From grinding away at that internal project to working on LoRa and Arduino board support to designing enclosures to recovering from the Intel IoT fallout, I've hardly had enough time to catch my breath.  Now that things are settling down a bit, I am looking forward to spending more time telling you all about the cool stuff I'm working on.

Friday, July 14, 2017

AutoDoc: We Automated Product Documentation

Geppetto's AutoDoc

Gumstix has announced this week that Geppetto users can now download documentation for their designs that is generated from the current state of their project.  The addition of the AutoDoc button marks the public release of a tool we've been using internally for some time.  As one of the content curators of this application, I'm excited to share it with everyone because it's a bigger deal than it sounds.

Hardware Documentation

I'm one of those people who find it satisfying to produce usable technical documentation - to describe the operation and setup of a platform in a legible, accurate and eloquent way.  I have always felt that written tech materials either skimp on details or skimp on readability, and I strive to find a balance of both.

For hardware, one of the documents engineers find most helpful is the schematic - a block diagram of the ICs and passive elements that are interconnected in a design.  Firmware programmers, on the other hand, are less reliant on these drawings.  Instead, they need to know the bus names, addresses, GPIO indexes, and features  of the devices connected to the SoC they are programming.
Both need access to technical reference manuals, a layout overview, and connection maps.

AutoDoc cover page for one of my designs
Geppetto's purpose is to provide an avenue for board development that does not require in-house electrical engineers, providing a piece of hardware that could pass directly into a developer's hands.  In my opinion, this is the epitome of the startup use-case.

Why AutoDoc?

Because Geppetto completes the layout, BOM, and fabrication steps for your design, you can have a board in your hands really fast.  That doesn't leave a lot of time for someone like me to sit down and write out a detailed description of your design and its components, so we developed a method of generating written design specs solely from the data later used to generate your board.  We have been able to provide this kind of documentation for some time and it has helped many clients get their applications up and running fast.

With the data in these files, developers can configure drivers, write interface software, and begin testing code before the board has even shipped.  By exposing access to this resource to you before you complete your design, you don't even need to order your boards before you get started. Clicking on the AutoDoc button gives you the pin-outs and signals as they are currently saved.  I feel like it's empowering you with ownership of your design at the earliest possible time.

...And I don't have to sit there and write it all out.

Board layout diagram and a module description

Why it Works

If you don't know what LaTeX is, you should.  It is essentially a programming language for documents.  Look at this way:  When you write a document in MS Word or Google Docs, you have to struggle with the complexity of its "What You See is What You Get" (WYSIWYG) interface.  This is nice for letters, memos, and most resumees, but when it comes to technical documentation, it becomes a fight.  Also, it's not particularly portable.  When you create a document in Google and download it as a .docx file, it definitely doesn't look the same.  Margins change, images move or disappear entirely, fonts are lost or mutilated...  A mess.

Tables, captions, title pages, pagination and indenting:  All these things can be hard-coded into a document with LaTeX.  It will look right every time you compile it.  It will look right when someone else compiles it.

So if we treat documentation as source, then we can script it.  We can apply templates to it. We can make the result deterministic and incrementally improve its quality and content.  And this is what we did with AutoDoc.  There is now no temporal or financial expense in creating a useful reference manual for custom designed Geppetto boards  Enjoy.

What's Next?


I like how Geppetto automates things.  Seeing what it delivers always makes me smile.  So what else can we automate.  Lots!  What else do you need, as firmware developers?  As project managers?  As startup companies?  You can look forward to more of it from Geppetto.


Monday, April 17, 2017

Playing With the New Caspa Cameras and Intel Joule Module

They're Here!

I'm very excited.  I've been waiting for these cameras for a while and they finally came into the office last week. The Gumstix store has added two new cameras to the Caspa family and they are fantastic: 

The Caspa HD is a 5 megapixel OV5670 imaging sensor.  A two-lane MIPI CSI-2 communication bus, 1.12-micron pixel, and 60 Hz framerate at 1080p make this a fantastic camera for mobile hardware designs.

The Caspa 4K is the 13MP Sony IMX214 with an auto-focus lens, 'HDR Movie' mode and 30 FPS 4K video.  The 4-lane CSI-2 bus delivers 4K video at 30 FPS for smooth, crisp Ultra-HD streaming and recording.



The best part about these two new additions is that they are 100% compatible with the Intel Joule module out of the box, which I'm also excited to have added to our store.

EDIT: The Intel Joule's pins and BIOS is set up such that the Caspa 4K connects to the JCAM1 connector on the module and Caspa HD to JCAM2!

One Stop Joule Shop

Let's recap some of the latest additions to the Gumstix store and the Geppetto module library:

  • First, there were the boards.  A connector-saving interposer and 5 board designs to cover a wide variety of projects and functions:
  • At the same time the connector module for the Intel Joule was added to the Geppetto D2O library so customers could quickly and easily design their own Joule expansion boards.
  • A little later, the Nodana, a 96Boards Consumer Edition-compliant Joule expansion was released.
  • Recently, the Active Cooling System for Intel Joule module was also added.
  • And now, all together Gumstix has added:
Gumstix is definitely a one-stop shop for anything you might need for the Intel Joule module, INCLUDING your very own custom expansion board.

Testing, Testing

Nope, I would not tell you about anything Gumstix if I hadn't already taken it out for a spin.  I hooked up both cameras to one of the office's Joules, flashed the BIOS and updated the disk image, and ran some tests.  This is what I can report:

As advertised, these cameras work out of the box.  Both have exceptional image quality for their classes, and the AF feature of the 4K is very effective.  I recorded a little demo reel in UHD just to show you.



It was literally this easy: 
  1. Update Joule firmware and reference OS disk image (https://software.intel.com/en-us/iot/hardware/joule/downloads)
  2. Power up the board and open up a terminal window in the Joule's XFCE desktop
  3. Enter a gstreamer command to start streaming video to the desktop
    • for Caspa 4K: 
    • $ gst-launch-1.0 icamerasrc device-name=0 io-mode=3 ! video/x-raw,format=NV12,width=1920,height=1080 ! vaapisink dmabuf-alloc-tiled=true
    • for Caspa HD:
    • $ gst-launch-1.0 icamerasrc device-name=1 io-mode=3 ! video/x-raw,format=NV12,width=1920,height=1080 ! vaapisink dmabuf-alloc-tiled=true
  4. SMILE!!!
Yep, that's it

I think you'll find the price of the new cameras very appealing as well at $25 and $30 (USD).  So if you're looking for a CSI camera for your Joule project, you'll find it, and many other tools you might need, in the Gumstix store!

Wednesday, April 5, 2017

Jumpnow Technologies has tamed RTC Trickle-Charging and Yocto on DuoVero

Jumpnow Technologies, a software consulting group and a Gumstix Verified Design Consultant recently posted an pair of instructional articles to help DuoVero developers get things done.

Building Duovero Systems with Yocto shows you how to assemble the meta layers and development tools you need to generate your own custom flavor of DuoVero-compatible Linux.  Everything from build machine setup to SD card prep is succinctly covered.  Now Gumstix has its own guide at gumstix.org, and our own yocto resources in our public repositories but the guide from Jumpnow is great for getting you started with application-specific custom builds.

Duovero Real-Time Clock answers the question "How do I set up trickle-charging  on the Parlor's RTC module?"  I know, that's probably been wracking your brain for months.  TI's TWL6030 has backup battery charging capabilities, but it is disabled by default.  Jumpnow's guide provides helpful instructions and a Linux 4.4 patch that gets the RTC registers configured to do the job.

Thanks to Jumpnow for providing these resources and many other instructional articles for Gumstix COMs, Raspberry Pi, BeagleBone Black, and more.

AS A DISCLAIMER: I have to point out that charging Li-Ion and LiPo cells can be dangerous and lead to damage, fire, or physical injury.  If you enable trickle charging on any Gumstix board, you do so at your own risk.

Friday, March 31, 2017

Gumstix Says "Hello World" to Arduino® with Geppetto D2O and Intel® Curie™

In the world of the Internet of Things and embedded systems, there is a whole class amateur designers and developers who thrive in the realm rapidly iterative prototype development.  We dub these people 'Makers' and recognize them as the innovators and creative thinkers of the amateur electronics world.  The Internet is teeming with their blogs, walkthrus, git repos, and YouTube channels and we love 'em! Nowhere else will you find a Bluetooth-controlled cat-feeding rube goldberg machine made entirely of Lego, cardboard, plywood and a little microcontroller development board.  No, I haven't witnessed this project myself, but I'm about 95% sure it's out there somewhere.


One thing many of them have in common is a love of the well-known Arduino®/Genuino® platform.  One of the best things about Arduino devices is that they're so easy to program.  People of all ages - students, hobbyists, artists, engineers, and more - are taking these inexpensive devices and a desire to learn and create, and using them to - as Mr. Bill Nye (@billnye) would say - "...Change the world!"

Image: John Park (jedgarpark.wordpress.com, @jedgarpark)
In my experience, classic programming of microcontrollers, or as we call them in the biz, MCUs, involves tedious and tiresome "bare-wire" programming in low-level languages such as C and often regresses into embedded assembly language.  Not to mention each brand of chip requires a different assembler inside the compiler toolchain.  With a lot of time and some trial and error, an experienced developer can produce a working product, but the barrier to entry is so high, you rarely see hobbyists messing around with this stuff.

More and more Arduino-compatible devices are surfacing and, as they do, new applications for the platform are discovered.  There seems to be no end to the enabling power Arduino provides to its users.

Intel recently released the Arduino 101, using the new Curie module - a miniscule 32-bit MCU, with plenty of value-added features, including Bluetooth and a gyro-accelerometer.  There's also a dedicated and programmable signal processing unit and 32-bit x86 processing power.

Just in time for Arduino Day 2017, Gumstix is announcing the addition of the Arduino-compatible Intel Curie module to the Geppetto module library.  What this means is that ANYONE can custom-design their own Arduino 101 board and take that amazing maker project out of its rat's-nest of wires, cables, and breadboards and into a product!  The added bonus is that you don't have to start your sketch from scratch because If you assign your pins carefully, your code should work right away.

I already mentioned that the Gumstix Radium 96BIE - a 96 Boards IoT Edition board using the Intel Curie module - was released in a previous post, and now I can confirm that it's Arduino compatible.  Oh yes, I personally made that built-in LED blink!  I have yet to put it through its paces, but I will.

So what are you going to make with Arduino and Geppetto?  Me?  I'm still excited about quadcopters after my drone demo project, so I've put together a micro-drone control board. It's less than 5x4 cm in size and includes ADCs, PWMs, GPIOs, GPS, I2C, USB... I love acronyms, don't you? Aaanyway, no one's building it yet but the design is there for you to look at and should give you an idea of what Geppetto can help you to with the Intel Curie, Arduino and your very own board design.

Friday, March 17, 2017

Gumstix Pi Compute Boards are CM3-Ready


If you follow me on twitter (@gstixguru), you might know that I recently ordered an RPi CM3.  Lots of people have been contacting us to find out how well our Pi Compute boards support the new, faster module, so I found a bit of time to play around with it.  I'd worked with the original CM on our dev board for my GPS and RTK project a year ago with great success, and was looking forward to getting back to the Pi Compute boards.

First Steps

As always, my first step was to flash a brand new image onto the CM's eMMC.  I downloaded the latest Raspbian Jessie Lite ISO and mounted my CM on a Gumstix Pi FastFlash.  Next, I ran rpiboot, plugged the board into my USB hub and CROSSED MY FINGERS!

RPi CM3 on a FastFlash getting flashed. Pardon the clutter.
So what happened next?  Exactly what should:  the eMMC was mounted to my file system like any unpartitioned flash drive would be.  So I dd'ed the image, moved the module over to the Gumstix Pi Compute Dev Board and got ready to Pi.

First Boot

At first, all I wanted was proof of life.  That and I was sure the default wpa supplicant and network interfaces config would not get me on the WiFi network.  So I screen'ed in and powered up the board.  And yes, the console came to life, spewing forth those familiar Linux startup messages.  No kernel panic, no errors, no problem.  So far so good. Raspbian Lite was up and running.  Oh, all the things I should test: GPIOs, I2C, SPI....  BORING!

Let's start with USB (Oh, and get the WiFi up and running while we're at it; screen is not my friend and SSH makes me smile:).  The WiFi dongle goes into the port and lsusb shows a list of devices.  And there it is.


Bus 001 Device 002: ID 148f:5370 Ralink Technology, Corp. RT5370 Wireless Adapter

Beautiful.  I fix up /etc/network/interfaces and add the office WiFi network to wpa_supplicant.config and shut it down.  Time to set this asside and get back to my other tasks.

Day 2

Before ditching the USB console connection, I have to go into raspi-config and enable the SSH host, and reconfigure the daemon:


sudo rm /etc/ssh/ssh_host_*
sudo dpkg-reconfigure openssh_server
After a restart, ssh works fine.


Let's got straight up the food chain to the camera!  That's what I want to see!  I want to get that Sony IMX219 taking stills and recording videos.  I want to see those LVDS signals in action.  The CSI-2 camera connector is by far my favorite feature of the dev board.  So while I was in raspi-config, I made sure to enable the camera as well.

Here's my Frankenberry Pi camera rig, ready to go, I hope.
So I hooked it up, fired up the module and... nothing.  Did I forget something?  Of course I did! I needed the device tree overlay blob for the camera.  Oops.  OK, so I grab the binary, -- I get the one for both camera and display, just because I can -- copy it to the boot partition and restart.

And did it work?  See for yourself:
Me and my clipboard.
Edit: Here's me trying to pretend I'm not being recorded by the Pi Camera:


Also

I also took a few minutes and got the USB-Ethernet board fired up, and yes, everything works great.
I am very happy.  Stay tuned!  I have a Raspberry Pi DSI display around here somewhere and I want to get that up and running too.

Friday, March 3, 2017

The New Active Cooling System for Intel® Joule™ Module

Having spent some time now with the  Intel® Joule™ module, I have found it to be a powerful tool in embedded and IoT technology.  But as we all know in this field, with great power comes great heat dissipation needs.  Like the CPU in your laptop, the Joule runs hot so, like the CPU in your laptop, it's a good idea to use something a bit more potent than 2 x 2 cm heatsink that comes with your module if you're going to be doing any major computation.

Well Gumstix now has an active cooling system, tailor-made for the Intel Joule module, in our online store.  You can order yours here.  To make everyone's life simpler, I'm writing a short how-to guide for installing it, and I'm giving you a preview right here.




Active Cooling System For Intel® Joule™ Module

KIT054

Installation Guide


This active heat dissipation unit provides a low-profile fan and heatsink solution for the Intel® Joule™ module.

Kit Contents

KIT054 contains a plastic heatsink shroud, 4 mounting screws, a Sunon Maglev MC30100V2 DC fan with 3-pin TE AMP connector, and a custom heatsink with a thermal interface material pre-adhered.  

Maglev MC30100V2 Technical Details: 

  • Air Flow:  3.7 CFM 
  • Speed:       7500 RPM
  • Noise:        24.0 dB
  • Power:      
    • 5.0 V
    • 72 mA
    • 0.36 W

Assembly Instructions

1. Mount module to expansion board


To mount the module to the board's connector, center it over the silkscreened footprint and press down over top of the module's connectors, as indicated in the adjacent image.  There will be an audible click when mounted properly.











2. Attach Heatsink

Before attaching the heatsink, remove the plastic membrane covering the thermal compound on its underside.  This paste will accelerate the dissipation of heat by forming a thermally conductive conduit between the sink and module.  Center the heatsink over the module and mount it with the provided screws, as in the image below, with a 1.6mm Phillips screwdriver.  The screws attach directly to the expansion board, securing the module and heatsink.

3. Mount Fan to Shroud

Attach the fan to the plastic shroud by pushing it into the the central cavity of the shroud, sticker side down, from the underside.  Ensure that the fan's wires are not pinched between the fan and the shroud's mounting tabs.  Apply pressure evenly on the left and right side of the fan until it snaps into place.




4. Mount Shroud and Fan to Heatsink

To complete active cooling system's assembly, attach the shroud and fan to the heatsink.  Place the shroud on top of the heatsink so that the fan fits in the cut-away region. Ensure the fan's wires pass between the fins of the heatsink and aren't being pinched.  Apply pressure to the left and right sides of the shroud until it snaps in place.




5. Connect Wires to Power Supply or Fan Control Connector.

The active cooling system's fan requires a 5V power supply and some Geppetto boards include a fan connector.  Either connect the fan's red wire to a 5V header pin and the black wire to GND, or insert the fan's connector into the board's connector if present.  The system is now ready for operation.


If any components are missing from the package, please contact sales@gumstix.com.





Intel, the Intel logo and Intel Joule are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

Wednesday, February 15, 2017

There is Nodana...

96Boards

For those of you who don't know about the 96Boards open-specification hardware platform, it's a design spec for single-board computers (SBCs) that enables SoC vendors to provide their hardware in a standard form factor for increased compatibility.  It's also an engaged community working together to develop applications, software, and mezzanine cards for this ecosystem.

96Boards now has 3 different specifications for 3 classes of application.  There's Consumer Edition (CE), with standardized breakouts for both high-speed and low-speed signals, USB ports, HDMI, and so on.  There's also the Enterprise Edition (EE), which is more for server and networking applications.  It's a larger and more free-form design, with a low-speed header, USB and Ethernet, minimum 1 GB DRAM or expandable SODIMM slots, and optional 1 - 16 x PICe.  Finally there's the brand new IoT Edition (IE) spec.  It's designed to be tiny in order to fit anywhere.

All of these specifications have variants that allow hardware developers to add extra bits to their boards, making this a very flexible way of standardizing the important parts of SBCs.

The big benefit is that you can unite developer communities accross platforms.  The mezzanine card or maker project developed for board A will be compatible with board B, and vice versa.  With support from Linaro, providing a common Linux ecosystem for these boards, not even software compatibility should get in your way.

My honest opinion is that this open specification is very cool.

Gumstix is a 96Boards Partner

Yep, we're in cahoots with the folks at 96Boards and Linaro to bring you compliant hardware.  The release of the AeroCore 2 for Dragonboard 410C was only the start.  At the same time, we added the 96Boards Mezzanine Connector module to Geppetto D2O's library so that users can design their own mezzos for other applications.  If you don't know what Geppetto is, you can learn more by going to the Meet Geppetto page, read my earlier posts, or go straight to geppetto.gumstix.com and give it a try.

I did a demo for 96Boards OpenHours, hosted by Mr. Robert Wolff (@sdrobertw) and actually flew my MAV, using a Dragonboard and the AeroCore 2 live in my office -- complete with a visit from the "demo demon".  The whole thing's on YouTube.



...Only Joule

So for those of you who don't know, a little compute module was released last year with quite a lot of juice hidden under its heat dissipator. The Intel® Joule™ module delivers unprecedented compute power in a tiny package.  From its two 100-pin Hirose connectors pour USB 3.0, MIPI LVDS,  PCI Express, HDMI, and a lot of what you already expect from COMs and SoCs.  It also houses its own WiFi and Bluetooth hardware.  All with the power of a quad-core processor akin to the Core-I7s you find in your desktop PCs.

Surprise, surprise, Geppetto's got that too!  You can go in and build your own host board using the Intel module and harness most of what it has to offer.

So a Square Peg and a Round Hole Walk Into a Bar...


On one hand you have this fantastic open spec hardware platform [round hole].  In the other, this epic compute module [square peg].  "those will never fit together," you might say (in fact, one 96Boards community member did).  Well, we gumstixians are very resourceful.  And the spec doesn't restrict the SoC's architecture to ARM, that's just the expectation.  So what did we do?  We took all of the components that make the 96Boards Consumer Edition spec great, we wired it up to the Joule connectors, (tested it), gave it a name, and unleashed it on the unsuspecting masses.

And that is how the Nodana 96Boards Consumer Edition (96BCE) for the Intel Joule module came to be.  Here it is:

Gumstix Nodana Features

The Black Sheep


That's right, all you doubters.  Now you can test your 96Boards projects on a powerful 64-bit multi-core Intel chip.  It's the first of its kind -- the first non-ARM 96Boards device.  Take it for a spin and tell me about what you do with it.  You can order it at store.gumstix.com/nodana-96bce.html

x86 IoT Fun

Psst!  We are also taking the IE spec to this dimension.  Our Radium 96BIE board complies with the 96Boards IoT Edition specification and runs the Intel® Curie™ module.  A 32-bit Quark processor  in bed with an ARCv2 MCU, a 6-axis internal measurement unit (IMU) and an independently programmable Bluetooth controller. Check it out at store.gumstix.com/radium-96bie.html.

Tuesday, February 14, 2017

Jacob Marks: Demystifying Computer Architecture for High School Students with Yale's Ventures in Science... And a Little Help From Gumstix


Interview with Jacob Marks:  
It’s a Processor!
Yale Undergraduates Bring Computer Architecture and Design into the High School Classroom with Geppetto D2O
By Keith Lee
03751c8.jpg
image: yale.learningu.org


Computer systems and embedded technology are playing a larger and larger role in our day-to-day lives.  From smartphones to smart homes, we’re putting computers everywhere.  As these systems become more and more complex, training the next generation of innovators gets increasingly difficult.

The first step, of course, is to convince High School students that degrees and diplomas in computer science are attainable goals.  Today, kids can usually pick up any device and start using it right a way.  But to them, the inner workings of computers may be a complete mystery.  So how do we break that barrier and demystify computer hardware?

Well, a handful of Yale undergraduates may be onto something, and they’re using Gumstix boards and Geppetto to do it.  Jacob Marks, a Yale senior and president of the Ventures in Science student organization, along with his colleagues designed a lesson plan to help young students engage, both intellectually and manually, with the inner workings of computer hardware and architecture. I asked Jacob some questions about it and he told me all about Ventures in Science, ‘It’s a Processor’, and his experiences.

Jacob and ‘Ventures in Science’ Take on STEM Education


“Ventures in Science (ViS) is an undergraduate organization at Yale, started five years ago by a bunch of students who wanted to connect undergraduates with scientists in industry,” Jacob says. “[...] In the past few years, ViS has refocused its efforts on educating the leaders of tomorrow about science and its role in law, technology, policy, and culture. When I became president of ViS, I realized we could further advance our objective by increasing scientific literacy and exciting children about science.”

To this end, he and his team started teaching middle school kids about the scientific method with paper airplanes. “My team led students as they experimented with different designs and materials, trying to throw their airplane the farthest. In just an hour, students learned about hypotheses, trials, controls, and variables.”

From there, their involvement in science education continued in the form of demonstrations at Science on Saturdays, a popular lecture series for kids at Yale, reaching out to students from dozens of New Haven schools.

IMG_5829.JPGJacob is a student of physics, mathematics and philosophy with a keen interest in quantum computing technologies.  But he confesses that his exposure to computers and technology was very limited in grade school. “I remember spending elementary and middle school computer classes learning to type with Mavis Beacon, and (more frequently) an “educational” computer game called Oregon Trail,” he related to me,  “When I started college I had never written a line of code, and I couldn’t tell ROM from RAM.”

This continues to be a typical sentiment in public schools.  For whatever reason, computer science and technology tends to get only the most cursory treatment.  Kids are encouraged to use computers in and out of the classroom for word processing, research, and edutainment but most often everything beyond the keyboard and screen is left a mysterious, black box of parts to many kids.

After being exposed to subjects like cryptography, and a software engineering internship at Reservoir Labs, and realizing how many other people’s pre-university computer science background was near zero he decided to make it his goal to “expose - and excite - as many students as possible about the subject.”

In order to tackle that challenge, he and his team developed a lesson plan called “It’s a Processor” for High School students. “ ‘It’s a Processor’ was the beta-test of a new interactive curriculum to teach kids about digital logic and computer architecture. Analogies and demonstrations help illustrate how all of the hardware components in a computer come together to perform computational tasks.”  

The title refers to more than just computer processor.  “The name ‘It’s a Processor’ points to the process of learning itself, self-consciously acknowledging that this one event is only one small part of a complete education in computer science,” He told me, “We wanted students to walk away with a basic understanding of computer architecture, but more importantly we wanted them to leave feeling inspired to dig further into the theory and practice of computer science.”  This certainly a noble aspiration for inspiration, which deserves a stronger foothold in our children's’ education.

IMG_2426.JPGThe Workshop

The ‘It’s a Processor’ drew in students from 7 different public schools, none of whom had ever seen the inside of a PC.  “For many, this was their first time seeing logic gates, and holding a processor, but they all caught on quickly. It was truly a pleasure working with these students!” The computers built during the event are all being donated to Wilbur Cross High School, “the largest public school in New Haven, and one of the most lacking in resources.”

IMG_5831.JPG1 - Getting Warmed Up

The workshop starts with a quick, 20-slide high-level presentation.  First it reviews the nature of electricity, describes digital logic, and then moves on to deconstruct computers into its various hardware components and architecture.  Explaining these more detailed features to the uninitiated can be a real challenge.

Often, when it comes time to describing the inner functions of the computer, educators will use the brain and central nervous system as an analogy to compute systems, but is this the right approach when you’re talking to high school students?  

“It’s true that the computer is often anthropomorphized - and the human-computer analogy is very strong,” Jacob agrees, but “[...] While children understand the roles that the ‘brain’ and the ‘nervous system’ play in a human, the connections between these various body parts are somewhat complicated and can be hard to visualize. To really appreciate the way that they work together, one would need a basis in biology and physiology.”

His team opted to use a beautifully hand-rendered “Computer as a City” example.  It relates memory to storage facilities, external ports to shipping docks, and buses to... well, buses.  Admittedly, this sounds much easier to assimilate than the organic CNS example. So where did this come from?

Computer as a City color with labels.png
IMG_2484.JPG“I first came up with the idea when I heard data buses described as ‘information highways’, and thought it would be interesting to map the parts of the computer onto different urban features. Then our graphic designer Dana Smooke ran with it and turned it into both a teaching tool and a work of art. The finished product was even better than we had hoped - and the kids loved it!”

2 - It’s a Computer

The kids had an opportunity to check out, up close and personal, what goes into the workstations at their school and at home.  Able to touch things like the motherboard, RAM modules, SSDs and power supply, they got to assemble their own “city”.  “[...] the tactile act of holding the internal components in their hands helped make computers more tangible. ‘It’s a Processor’ turned a ‘black box’ into hardware that they recognize and appreciate.”  After all the demystification of computer hardware and architecture is the primary goal of the workshop.


IMG_2448.JPGIMG_2456.JPG

IMG_2437.JPGBut desktop computers weren’t the only things these kids got their hands on.  Gumstix partnered with ViS at Yale, and donated ‘Pepper DVI-D’ single-board computers (SBCs) for the students to investigate.  The Pepper DVI-D is a 10x7 cm SBC with Ethernet, HDMI, USB, audio and a bootable SD card slot -- everything a barebones system needs -- connected to an ARM Cortex-A9 SoC.  Each group was given a Pepper to connect, boot, and play with, adding to the haptics of the experience.  “ Working with the sleek and light-weight Pepper board took away the potentially intimidating scale of a massive HP-like motherboard.” With peripherals connected and SD card loaded, the students were able to observe a working Linux environment on a tiny, unobtrusive device.


IMG_5832.JPG
IMG_5830.JPG

3 - Grand Finale: Geppetto

GepAndGumLogo_NoD2O_Orange.png
IMG_2489.JPGGeppetto is a web application from Gumstix that allows users to build their own embedded computers from the ground up in minutes without using complex tools.  While this tool is ideal for small to medium size tech companies and startups looking for a fast path to market, its intuitive design proved helpful in driving home the day’s experiences.  “All of the students loved using Geppetto!” shared Marks, “I walked them through a brief tutorial on the projector screen and then they each had a chance to play around with it on their own. The kids were so drawn into Geppetto that we actually had to get more computers so that they could all explore the framework at once.”

IMG_2494.JPG“The most valuable feature of Geppetto [for the lesson] was definitely the “show-price” capability. The students got really into seeing who could design the cheapest motherboard that had specific components,” he shared, “The blueprint view also helped them as they attempted to fit as much as possible onto a board without having to extend it. [...] the students really loved the opportunity to design custom motherboards, moving beyond the limitations of pre-made hardware.”

The team wrapped up the session with Geppetto’s 3D preview, a feature that shows you a close approximation of your board’s appearance before you even order it.  It’s rendered in real time in your browser so you can rotate, zoom, and even export the model as an .STL file.  “Geppetto was the perfect finale to our event. Its 3D viewing capabilities allowed the kids to concretely identify the abstractions of Computer as a City with the physical components of the computer they had just constructed.”

Bringing It Home

When asked about how the whole session went, he told me about how the students felt about the experience:
FullSizeRender.jpg

“After the event, we asked the students to take a short survey about our interactive activities and demonstrations. Their responses were mostly positive, but some of the students suggested that we make the activities EVEN MORE hands-on. We definitely hope to do so in future iterations.

IMG_5840.JPG“‘It’s a Processor’ was a huge success in that it helped get kids interested in computer architecture. But there is still so much work to be done refining our curriculum and learning to express concepts as effectively as possible. This is absolutely an ongoing process. The next step is to bring this to a wider audience by working with both middle and high schools all over connecticut.”

“It brought me great joy to see how the team was able to use our Geppetto system in the curriculum to bring the students right into the process of device creation,” said Gordon Kruberg, M.D., C.E.O. of Gumstix, Inc.  “We at Gumstix are proud to support the It’s a Processor curriculum and look forward to seeing more smiling faces from student inventors as they begin to understand that they can control their own futures.”

For more information or the Ventures in Science curriculum contact Jacob Marks at jacob.marks@yale.edu

IMG_2470.JPGRelated Links:


Photos from the ‘It’s a Processor’ workshop provided by Jacob Marks and the Ventures in Science Student Society with written permission from participants.  

The ‘Computer As a City’ artwork contributed by Dana Smooke.

Keith Lee is the Gadget Guru at Gumstix.  He has a Master’s degree in Computer Engineering From the University of British  Columbia and enjoys making, tinkering with, and designing gadgets of all kinds whenever possible.
Twitter: @gstixguru