Showing posts with label aerocore 2. Show all posts
Showing posts with label aerocore 2. Show all posts

Wednesday, February 15, 2017

There is Nodana...

96Boards

For those of you who don't know about the 96Boards open-specification hardware platform, it's a design spec for single-board computers (SBCs) that enables SoC vendors to provide their hardware in a standard form factor for increased compatibility.  It's also an engaged community working together to develop applications, software, and mezzanine cards for this ecosystem.

96Boards now has 3 different specifications for 3 classes of application.  There's Consumer Edition (CE), with standardized breakouts for both high-speed and low-speed signals, USB ports, HDMI, and so on.  There's also the Enterprise Edition (EE), which is more for server and networking applications.  It's a larger and more free-form design, with a low-speed header, USB and Ethernet, minimum 1 GB DRAM or expandable SODIMM slots, and optional 1 - 16 x PICe.  Finally there's the brand new IoT Edition (IE) spec.  It's designed to be tiny in order to fit anywhere.

All of these specifications have variants that allow hardware developers to add extra bits to their boards, making this a very flexible way of standardizing the important parts of SBCs.

The big benefit is that you can unite developer communities accross platforms.  The mezzanine card or maker project developed for board A will be compatible with board B, and vice versa.  With support from Linaro, providing a common Linux ecosystem for these boards, not even software compatibility should get in your way.

My honest opinion is that this open specification is very cool.

Gumstix is a 96Boards Partner

Yep, we're in cahoots with the folks at 96Boards and Linaro to bring you compliant hardware.  The release of the AeroCore 2 for Dragonboard 410C was only the start.  At the same time, we added the 96Boards Mezzanine Connector module to Geppetto D2O's library so that users can design their own mezzos for other applications.  If you don't know what Geppetto is, you can learn more by going to the Meet Geppetto page, read my earlier posts, or go straight to geppetto.gumstix.com and give it a try.

I did a demo for 96Boards OpenHours, hosted by Mr. Robert Wolff (@sdrobertw) and actually flew my MAV, using a Dragonboard and the AeroCore 2 live in my office -- complete with a visit from the "demo demon".  The whole thing's on YouTube.



...Only Joule

So for those of you who don't know, a little compute module was released last year with quite a lot of juice hidden under its heat dissipator. The Intel® Joule™ module delivers unprecedented compute power in a tiny package.  From its two 100-pin Hirose connectors pour USB 3.0, MIPI LVDS,  PCI Express, HDMI, and a lot of what you already expect from COMs and SoCs.  It also houses its own WiFi and Bluetooth hardware.  All with the power of a quad-core processor akin to the Core-I7s you find in your desktop PCs.

Surprise, surprise, Geppetto's got that too!  You can go in and build your own host board using the Intel module and harness most of what it has to offer.

So a Square Peg and a Round Hole Walk Into a Bar...


On one hand you have this fantastic open spec hardware platform [round hole].  In the other, this epic compute module [square peg].  "those will never fit together," you might say (in fact, one 96Boards community member did).  Well, we gumstixians are very resourceful.  And the spec doesn't restrict the SoC's architecture to ARM, that's just the expectation.  So what did we do?  We took all of the components that make the 96Boards Consumer Edition spec great, we wired it up to the Joule connectors, (tested it), gave it a name, and unleashed it on the unsuspecting masses.

And that is how the Nodana 96Boards Consumer Edition (96BCE) for the Intel Joule module came to be.  Here it is:

Gumstix Nodana Features

The Black Sheep


That's right, all you doubters.  Now you can test your 96Boards projects on a powerful 64-bit multi-core Intel chip.  It's the first of its kind -- the first non-ARM 96Boards device.  Take it for a spin and tell me about what you do with it.  You can order it at store.gumstix.com/nodana-96bce.html

x86 IoT Fun

Psst!  We are also taking the IE spec to this dimension.  Our Radium 96BIE board complies with the 96Boards IoT Edition specification and runs the Intel® Curie™ module.  A 32-bit Quark processor  in bed with an ARCv2 MCU, a 6-axis internal measurement unit (IMU) and an independently programmable Bluetooth controller. Check it out at store.gumstix.com/radium-96bie.html.

Friday, November 4, 2016

How I Got My Dragonboard 410C Airborne

I was recently a guest on 96Boards OpenHours to demonstrate how the Aerocore 2 for Dragonboard 410C can be used to quickly and easily build a working quadcopter.   I even powered it up and tested it out indoors live.

If you want to see what happened, check out the YouTube video. The test flight happens at around the 40-minute mark.


Drones are awesome and not that hard to set up.  You can follow along with me if you're building your own.  Once you've got your rig put together, then you can start adding software to the Dragonboard -- or Any 96Boards CE SBC -- to turn it into a self-piloting, obstacle-avoiding, object-following marvel of automation... or whatever it is you plan to do with it.

To find out more about the Aerocore 2 for Dragonboard 410C, you can read my previous post or watch this promo video

The Parts

 The first step in building your quadcopter is to make sure you have all of the hardware you'll need.  Here's what I had on-hand:



You know you work somewhere cool when you can assemble a drone from hardware lying around the office.

The Prep

To keep this post brief, I'm going to glaze over the following steps.  They're fairly straightforward and unrelated and ubiquitous in MAV deployment so there are plenty of instructions available on the web.


  1. Assemble your drone kit.
    • Do not attach the rotor blades yet. You really don’t want your drone unexpectedly taking flight in the middle of your office/house/garage.
  2. The 12V battery connector and regulator on the Aerocore can handle the main battery’s output but there is no built-in connector on the drone or the battery.  
  3. solder-highlight.png
    • You can solder some jumper wires onto one of the motor power terminals on the base plate of your drone (circled in green here)
  4. Make sure you’ve flashed your Dragonboard with Linux. Linaro’s Debian 16.09 was used for this demo.
  5. Build QGroundControl.
  6. On your dragonboard 410C install the necessary packages
    • $ sudo apt-get update && sudo apt-get install python-wxgtk3.0 python-pip python-numpy python-dev libxml2-dev libxslt-dev gstreamer1.0-tools
    • $ sudo pip install pymalink
    • $ sudo pip install mavproxy
  7. Bind your satelite DSM receiver with your radio

(UPDATE:  Since the original project was completed, something about the pymavlink pip package has changed and will no longer install dependencies correctly.  therefore, add python-lxml to your apt-get command before installing pymavlink and mavproxy)

Put It All Together

Now the fun stuff can begin!  It's time to get everything hooked up and ready to fly.

Step 1: Attach your boards

With this thing going up in the air, you won't want your hardware sliding around at all so it's good to put some thought into how your boards are mounted.  The chassis I'm using doesn't have what I'd call a universal mounting system, so I made my own.  The box for an Intel Edison turned out to be just the right size and very sturdy.  I've already been using one on the rover in my RTK project to house a Beaglebone Black.

Some zip ties, screws and risers quickly transformed the cardboard box into a mounting bracket for my Dragonboard.  A touch of shameless self-promotion and it's ready.

Board goes on brackets, Aerocore on board.  I used a bit of electrical tape to hold the receiver in place and was ready to wire it up.

Pro-Tip:

MAVs tend to have alarm buzzers, used to indicate low battery and signal loss.  This is very important when in flight, but when you're setting everything up it can be really annoying.  Thankfully, the buzzer on the Aerocore 2 has a bypass circuit. After soldering a 2-pin header on the underside of the Aerocore, directly underneath the buzzer, you can use a jumper to deactivate the alarm.  For obvious reasons, I don't recommend hard-wiring the alarm bypass.  The picture to the right should help you find the two vias to connect.


  Step 2: Connect Wiring

One benefit of using a box as a mounting bracket is that it has proved to be the ideal place to hide excess wiring.  I cut a small opening in the bottom of the box and fed all of my wires in and through.  I got my hands on a webcam and managed to squeeze its base and cable in there too.  I labeled the following image so you can see where the various connections are.

Not having previous experience with MAVs, I had no idea what order to hook the electronic speed control PWMs in.  It took me a while, but I figured it out.  I put together an infographic for the rest of the amateur MAVers so that you don't have to struggle like I did.

Step 3: Software

The final pre-flight step is to configure your software.  There are three steps:
  1. Flash PX4 firmware to the MCU
  2. Start data pipeline on the Dragonboard
  3. Calibrate on-board sensors

QGroundControl makes programming and configuring your drone a snap.  Open up the program and go to the setup tab (Selection_065.png).  Along the left-hand side will be a button labeled “Firmware”. When you click on this button and then connect the Areocore 2 MCU’s “stm console” via USB, QGC will guide you through the flash process.
microcontroller-console.png

The rest of the pre-flight work can be done over WiFi on the Dragonboard. Going wire-free will also make calibration a little easier.

Disconnect the USB cable from your Aerocore and connect the battery. Once the MCU and Dragonboard boot, SSH into the Dragonboard and enter the following command:

mavproxy.py --master=/dev/ttyMSM1 --baudrate 115200 --out xxx.xxx.xxx.xxx:14550 --aircraft MyCopter
Where xxx.xxx.xxx.xxx is the IP address of your PC.

Once the MAVlink command interface comes up on the Dragonboard, QGC should be able to connect to your drone. If it does not connect correctly, you may have to add a UDP connection to QGC’s settings.  The setup screen should look simmilar to the following screenshot:

drone_setup.png

If this is the first time your Aerocore has been configured, the cicles that appear green in this shot will be red and you will not be able to deploy your drone until they all appear green.

Configuring your drone and calibrating the sensors is very straightforward thanks to the self-explanatory interface in QGC.  Click on each item along the left-hand side in turn -- apart from “Firmware”, which you have already done -- and follow the on-screen instructions.  Once all the lights are green, you’re ready to fly.

The final, and completely optional steps are getting the camera feed from the Dragonboard to QGC, and attaching a Pre-GO GPS module.  

Adding a GPS module is very easy.  Once it’s connected, it will work right away.  Connect it to the 5-pin molex connector next to the DSM satellite receiver connector.  Power down your drone and plug the module in using the included cable, and it's ready.  I added mine last thing right before the live test flight and it worked with no set-up required.

The video streamer, like the MAVlink proxy, is a single command on the Dragonboard:


gst-launch-1.0 uvch264src initial-bitrate=1000000 average-bitrate=1000000 iframe-period=1000 \
   device=/dev/video0 name=src auto-start=true src.vidsrc ! video/x-h264,width=1920,height=1080, \
   framerate=24/1 ! h264parse ! rtph264pay ! udpsink host=xxx.xxx.xxx.xxx port=5600


With both the proxy and the video feed running on the Dragonboard, your flight screen will look something like this:

in-flight.png

If you have added a Pre-GO GPS module, your drone’s location will appear in the navigation map seen here in the inset. You can switch the primary view between the video stream and the navigation map by clicking on the inset in the bottom left-hand corner.

 

And There You Have It...

You now have yourself a working drone.

Wednesday, August 24, 2016

Make Your Own 96Boards CE Mezzanine Board


www.96boards.org
96Boards is really gaining some traction in the embedded world. Its open specification, software support, and community make it an appealing platform for hardware developers, programmers and makers alike.  Part of the specification for the Consumer Edition boards is a mezzanine connector.  This allows users to expand the hardware capabilities of their 96Boards-compiant SBC.  So where do these mezzanine boards come from?


Commercial Mezzanine Boards

Several expansion boards already exist and are available for purchase from online vendors such as ARROW.  These boards are meticulously crafted by hand by a team of engineers and can take a considerable amount of time from conception to market and may not be ideal for your needs.  It would be good to be able to design your own board to meet your project specifications.  For example Gumstix has released the AeroCore 2 for Dragonboard 410C.  But what if you need additional sensors or another UART port or two?  Soldering in wires and adding breadboards is one way of doing this, but it's messy and cumbersome... Especially for drone applications.

Enter Geppetto D2O

What if I told you that you could just take the board, stretch it out and drop in some new hardware?  That would be nice, wouldn't it?  Well, when you import a design into your workspace from our existing ones, that's exactly what you can do.  And, of course, you can always start a design from scratch.

Geppetto D2O (Design to Order) allows you to design or customise an expansion board with a familiar-feeling drag-and-drop interface.  A long list of modules can be placed wherever you need them on your design and
connecting them to the other modules on your board is easy with Geppetto's context menu system.

The Geppetto workspace
Gumstix will even build and test your board for you, ensuring that your design is mechanically sound and ready to go.  A $1999 set-up fee and a few weeks later and your design is in your hands.

Aside from Gumstix's own Overo and DuoVero COMs, connectors for many 3rd party COMs and some on-board SOCs and microcontrollers are available as well.  Alongside the release of the new AeroCore 2 board, which, by the way, was itself designed in Geppetto, we have added a 96Boards-compliant mezzanine connector to the Geppetto module library.

It has never been easier to create your own expansion boards.  If you're looking for the shortest path to market or just want to design your "ultimate IoT development board," make sure you check this out.

Making the AeroCore 2 for 96Boards

Like I said earlier, the Aerocore 2 for Dragonboard 410C was designed in Geppetto by our engineers. All of the hardware on the board comes from the modules in Geppetto's library and the process is easily reproduced.  In fact, I think I'll just walk you through it right now.  How about I make my own version of the design from scratch?  It won't take long.






Step 1: Go to Geppetto

Geppetto is entirely online.  There is no need to install any software, configure settings, or hassle with any of the plethora of problems that CAD software can cause.  If your browser works, Geppetto works.

When Geppetto finishes loading, which only takes a few seconds, your workspace comes up.  This is where you design your board.  There are a few tutorial videos if you want a detailed look at the Geppetto interface.  For now I'm going to focus on building my own AeroCore 2 for 96Boards.







Step 2: Add the Connector

Grab the mezzanine connector for 96Boards from the "COM Connectors" tab in the column to the right.  It snaps to the bottom edge of the board.  This makes sure that the USB and HDMI ports on the host board are accessible.  The default board size is a little small for the module and can be resized as you would a window on your desktop.  Once the connector fits on the board you will notice that the board outline and the connector module are  both red.  That is because there are unmet reqirements.





Step 3: Satisfy Requirements

Almost every module that you place on the board will either require or provide certain signals and
buses.  The only exceptions to this rule are mechanical elements, such as mounting holes.
When you hover over a module, its requirements are displayed in a menu that pops up beside the module.  If you click on it, a list of modules that will satisfy that reqirement will appear in the library. Once you've placed a compatible module on the board, you can connect the modules by clicking on them in turn.  As soon as the requires are satisfied, the board and modules turn green.

Yes, it's a big game of "red light, green light." My kids love that one.  Make everything green and the board will work.  So far, all we can do is boot the board with a 16V battery for power.  Time to add some features.

Step 4: A Microcontroller

Some boards require a microcontroller to, say, manage sensor output or control some servos.  In the case of the AeroCore 2,  an ARM Cortex-M4 MC does more than that.  It actually runs a PX4 compatible autopilot software suite for drone control.

The COM connections for 96Boards are mounted on the underside of the board so modules can be placed within its shadow, as long as they don't overlap with the green footprint.  So in order to save space, I'm going to squeeze the M4 in there.  I can rotate the module by right-clicking it and selecting "rotate" from the context menu.  Double-clicking modules also rotates them.

The M4 requres 3.3V so we need to add a regulator in order to power it from the battery.  The regulator could also take 5V from the host board, but we'll be multiplexing that source with the battery later.





Step 5: The Meat

Now that the compute devices are placed, it's time to add the sensors, headers and connectors that make up the AeroCore 2.  If you watch the animation to the left, you can see the board come to life.  With each module added, all of the requires are provided and all of the modules turn green.  This only took me about 30 minutes to do, and with a little extra time and patience, I could re-arrange the board to match the design for the AeroCore 2 for Dragonboard exactly.  The only thing my design lacks is the LTE modem.  That one we added in after the Geppetto design was completed, squeezing it in over other module footprints.
You can see from the pictures below that my design (below) is pretty good, compared to the original design (above).
The Gumstix Aerocore 2 for Dragonboard 410C

My Aerocore 2 for 96Boards


But don't take my word for it, get started now! Go to geppetto.gumstix.com and start designing your own board for free.

Tuesday, August 16, 2016

Big News From the Intel Developer Forum

The Big News


Intel just announced a new compute module for IoT, pro makers, hardware startups.  It's a big deal and Gumstix brought Geppetto to the party.
The Intel Developers Forum is in full swing in San Fransisco and during the keynote demonstration, the Intel® Joule™ module was introduced to the world.  This thing is a powerhouse!  It boasts a quad-core x86-64 processor at 1.7GHz, 4GB RAM, and up to 16GB on-board storage.  this, plus UEFI-capable bios, 1080p HDMI, two-lane PCI Express 2.0, and USB 3.0 and 2.0 give this tiny 20x40mm compute module the power of your massive desktop workstation.  In fact, you can see the Gumstix Workstation for Intel® Joule™ in action at our booth at the IDF!

Gumstix and Geppetto there for Intel® Joule™


That's right! We are there!  A connector module for Intel®'s new compute module is already available for your Geppetto board design and we are demonstrating it for you right at ground zero.  We have already designed six boards for the Intel® Joule™ and have brought some of them with us to show you.  Now, I won't be there but I and my partners in crime will be introducing Geppetto and the Intel® Joule™ module connector to booth visitors via telepresence.

All six of our boards are available in our store.  Take a look at the current selection:
The Gumstix boards for the Intel® Joule™ module 



If You're There, Come Visit Us.  If You're Not There, Come Visit Us


We want to show you what Geppetto can do.  The boards we brought with us were Designed by Gumstix in Geppetto and you can design your own right there in a few minutes.  The whole team is there to help you out and answer your questions.  If you don't happen to be there, go check out geppetto.gumstix.com and give it a shot yourself.



Intel, the Intel logo and Intel Joule are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. 

Friday, July 22, 2016

More on the Areocore 2 for Dragonboard 410C



 As you could probably tell from my earlier post, I'm pretty excited for  the new Aerocore 2 board.  I just posted a short video showing off the board's features and performance that you really should watch if you have any interest in MAVs, drones or swarms.  This board's got some awesome capabilities.

Check out the video and see for yourself:



Wednesday, June 29, 2016

AeroCore 2 for Dragonboard 410C: DragonDrones?

I'm taking a bit of a break from RTK and robots today because I'm pretty excited about a board we recently released.  I've always been interested in UAVs and drones, and have wanted to build one out of the derelict UAV frames we have lying around the office here.  Well, I may get my chance in the near future.  The AeroCore 2 expansion board for the Dragonboard 410C is now available and is a major upgrade from its Overo and DuoVero counterparts.

AeroCore 2

Innovation in UAV Flight Control


The AeroCore 2 was originally released Fall 2015 for the Gumstix Overo and DuoVero COMs to replace the original AeroCore, adding Spektrum DSM-2 RC connectivity, more communication headers, and GPIOs, and moving GPS off-board with Gumstix the Pre-GO family of boards (which I am currently playing with in my other posts).  The AeroCore family of expansion boards were developed in conjunction with graduate students from Stanford University's Aero/Astro program.  Its small dimensions make it ideal for micro aerial vehicles.

On-Board Autopilot

The AeroCore 2 design includes an on-board ARM Cortex-M4 microcontroller running NuttX RTOS.  It not only manages I/O data in real time, it's also compatible with PX4 autopilot software for fully automated flight.

Higher Level Thinking

The inclusion of a powerful processor in a drone allows for in-flight decision-making, such as low-latency obstacle avoidance, computer vision-based navigation, or swarm applications.  AeroCore 2 boards are designed to connect to Overo and DuoVero COMs, with ARM Cortex-A9 processors capable of these compute-intensive tasks.


Now for Dragonboard 410C

The new AeroCore 2 for Dragonboard 410C, as I mentioned earlier, adds some really cool features to an already spectacular platform.

A New SBC 

The Dragonboard 410C from Arrow is more than a COM, it's a single-board computer that has been built to match the 96Boards CE specs.  With a Qualcomm Snapdragon 410 processor, 1GB RAM and on-board eMMC storage, this credit card-sized SBC is a force to be reckoned with.

The Dragonboard is designed to connect to expansion boards.  Much like the BeagleBone Black has capes and the Arduino has shields, Any board designed to mate with the 96Boards spec can be connected to the Dragonboard.

A compatible connector module has been added to our repertoire of COM
connectors and we've begun designing boards for the 410C.

We started with the AeroCore 2 design.

What's New For AeroCore 2

As good as any design may be, there's always room for improvement.  This includes the tried and true AeroCore 2.  Two exciting new features were added to this iteration that continue to expand the board's functionality.

First, a CSI-2 camera connector was added.  This is a fast communication channel capable of driving HD cameras like the Raspberry Pi camera.

The other big deal is the NimbeLink Skywire 4G LTE modem connector.  Remote control doesn't get much more remote than that.

Designed by Gumstix in Geppetto

Even though you could order the board from the Gumstix store for around $150, your startup/research project/product may require different or additional features. Geppetto is an amazing tool for creating your own custom boards, or for modifying existing ones.  It's a drag-and-drop web interface that allows you to place hardware, from an ever-growing library of headers, connectors, ports, sensors and more, on your design, order it from Gumstix (for a $1999 set-up fee) and receive the final, tested, board in about three weeks.  For more information, go to:
www.gumstix.com/geppetto/

Board designs from Gumstix engineers are freely available and you can clone them to your workspace and change them however you want.  You can get started with the AeroCore 2 for Dragonboard 410C by following this link.